Peer Reviewed Scientific Papers

MIF Tutorials and Primers:

  1. I. R. Lindemuth and R. C. Kirkpatrick, “Parameter space for magnetized fuel targets in inertial confinement fusion,” Nucl. Fusion, vol. 23, p. 263, 1983.
  2. R. C. Kirkpatrick, I. R. Lindemuth, and M. S. Ward, “Magnetized target fusion: An overview,” Fusion Tech., vol. 27, p. 201, 1995.
  3. M.M. Basko, A.J. Kemp, J. Meyer-ter-Vehn, “Ignition conditions for magnetized target fusion in cylindrical geometry,” Nuclear Fusion, Vol. 40, No. 1, p. 59 (2000).
  4. Y. C. F. Thio, “Status of the U.S. program in magneto-inertial fusion,” J. Phys. Conf. Ser. 112, 042084 (2008).
  5. Y. C. Francis Thio, “Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields,” Paper presented at IFSA 2007, Kobe, Japan. http://www.osti.gov/scitech/biblio/1159661. Full-length version of Y. C. F. Thio, “Status of the U.S. program in magneto-inertial fusion,” J. Phys. Conf. Ser. 112, 042084 (2008).
  6. Irvin R. Lindemuth, The Ignition Design Space of Magnetized Target Fusion, Phys. Plasmas, accepted for publication, published online December 14, 2015.
  7. Lindemuth, I. R. and Siemon, R. E. The fundamental parameter space of controlled thermonuclear fusion. Am. J. Phys. 77, 407, 2009.

PJMIF and Coaxial Plasma Gun Concept Papers and Primers:

  1. Thio, Y. C. F., Panarella, E., Kirkpatrick, R. C., Knapp, C. E., Wysocki, F., Parks, P. and Schmidt, G., “Magnetized target fusion in a spheroidal geometry with standoff drivers,” In: Proc. of the Second Int. Symp. on Current Trends in Int. Fusion Research, (ed. E. Panarella). Ottawa: National Research Council of Canada, p. 113, 1999.
  2. Thio, Y. C. F., Knapp, C. E., Kirkpatrick, R. C., Siemon, R. E. and Turchi, P. J., “A physics exploratory experiment on plasma liner formation,” J. Fusion Energy, 20, 1, 2001.
  3. Y. C. F. Thio, B. Freeze, R. C. Kirkpatrick, B. Landrum, H. Gerrish, G. R. Schmidt, “High-energy space propulsion based on magnetized target fusion,” AIAA Paper 99-2703, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Los Angeles, California, 20-24 June, 1999.
  4. S. J. Langendorf and S. C. Hsu, “Semi-analytic model of plasma-jetdrivenmagneto-inertialfusion,” Phys. Plasmas, vol. 24, p. 032704, 2017.
  5. Y. C. Francis Thio, Jason T. Cassibry, Thomas E. Markusic, “Pulsed Electromagnetic Acceleration of Plasmas,” Paper AIAA-2002-3803, 38th AIAA Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, July 7-10, 2002.
  6. J. T. Cassibry, Y. C. F. Thio, and S. T. Wu, “Two-dimensional axisymmetric magnetohydrodynamic analysis of blow-by in a coaxial plasma accelerator,” Phys. Plasmas, vol. 13, p. 053101, 2006.
  7. Witherspoon, F. D., Case, A., Messer, S. J., Bomgardner, II, R., Phillips, M. W., Brockington, S. and Elton, R., “A contoured gap coaxial plasma gun with injected plasma armature,” Rev. Sci. Instrum. 80, 083506, 2009.
  8. Hsu, S. C., T. J. Awe, S. Brockington, A. Case, J. T. Cassibry, G. Kagan, S. J. Messer, M. Stanic, X. Tang, D. R. Welch, and F. D. Witherspoon, “Spherically imploding plasma liners as a standoff driver for magnetoinertial fusion,” IEEE Trans. Plasma Sci. 40, 1287, 2012
  9. Knapp, C. E. and Kirkpatrick, R. C., “Possible energy gain for a plasma-liner-driven magnetoinertial fusion concept,” Phys. Plasmas 21, 070701, 2014
  10. Hsu, S. C., “Technical summary of the first U.S. plasma jet workshop,” J. Fusion Energy 28, 246.
  11. S. C. Hsu, A. L. Moser, E. C. Merritt, C. S. Adams, J. P. Dunn, S. Brockington, A. Case, M. Gilmore, A. G. Lynn, S. J. Messer and F. D. Witherspoon, “Laboratory plasma physics experiments using merging supersonic plasma jets,” J. Plasma Phys., vol. 81, 345810201, 2015.
  12. S. C. Hsu, “Plasma Liners and the Potential for a Standoff Fusion Reactor” and F. D. Witherspoon, “Plasma Jet Drivers for Magneto-Inertial Fusion (PJMIF),” talks given at the ARPA-E workshop on Drivers for Economical Fusion Technologies, Oct. 29–30, 2013, Berkeley, CA; download talks at http://arpa-e.energy.gov/?q=arpa-e-events/drivers-economical-fusion-technologies-workshop.
  13. P. McGrath, Spherically Imploding Plasma Liners as a Standoff Magneto-Inertial-Fusion Driver, ARPA-E, May 2014, http://arpa-e.energy.gov/?q=slick-sheet-project/plasma-liners-fusion
  14. R. B. Adams, G. Stratham, S. White, B. Patton, Y. C. F. Thio, J. Santarius, R. Alexander, S. Fincher, T. Polsgrove, J. Chapman, A. Phillips. Crewed Mission to Callisto Using Advanced Plasma Propulsion Systems. NASA Technical Report 2004, NASA Marshall Space Flight Center, Huntsville, Alabama, USA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030062121.pdf

PJMIF Experimental Papers:

  1. Y.C.F. Thio, R. Eskridge, M. Lee, J. Smith, A. Martin, T. E. Markusic, J. T. Cassibry, “An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator,” AIAA-2002-4269, 38th AIAA Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, July 7-10, 2002.
  2. S. C. Hsu, A. L. Moser, E. C. Merritt, C. S. Adams, J. P. Dunn, S. Brockington, A. Case, M. Gilmore, A. G. Lynn, S. J. Messer, and F. D. Witherspoon, “Laboratory plasma physics experiments using supersonic plasma jets,” J. Plasma Physics, 81, 345810201 (2015).
  3. Merritt, E. C., Moser, A. L., Hsu, S. C., Adams, C. S., Dunn, J. P., Holgado, A. M. and Gilmore, M. “Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets,” Phys. Plasmas, 21, 055703, 2014.
  4. S. Messer, A. Case, L. Wu, S. Brockington, and F. D. Witherspoon, “Nonlinear compressions in merging plasma jets,” Phys. Plasmas, 20, 032306 (2013).
  5. Case A., S. Messer, S. Brockington, L. Wu, F. D. Witherspoon,1 and R. Elton, “Merging of high speed argon plasma jets,” Phys. Plasmas, 20, 012704 (2013)
  6. Li, C. K. et al., “Structure and dynamics of colliding plasma jets,” Phys. Rev. Lett. 111, 235003, 2013.
  7. F. D. Witherspoon, S. Brockington, A. Case, S. J. Messer, L. Wu, R. Elton, S. C. Hsu, J. T. Cassibry, and M. A. Gilmore, “Development of MiniRailguns for the Plasma Liner Experiment,” Bull. Amer. Phys. Soc., vol. 56, p. 311, 2011.
  8. S. Brockington, A. Case, S. Messer, L. Wu, and F. D. Witherspoon, “The HyperV 8000 µg, 50 km/s plasma railgun for PLX,” Bull. Amer. Phys. Soc., vol. 57, p. 134, 2012.
  9. S. C. Hsu, E. C. Merritt, A. L. Moser, T. J. Awe, S. J. E. Brockington, J. S. Davis, C. S. Adams, A. Case, J. T. Cassibry, J. P. Dunn, M. A. Gilmore, A. G. Lynn, S. J. Messer, and F. D. Witherspoon, “Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications,” Phys. Plasmas, 19, 123514, 2012.
  10. Merritt, E. C., Lynn, A. G., Gilmore, M. A., Thoma, C., Loverich, J. and Hsu, S. C. “Multi-chord fiber-coupled interferometry of supersonic plasma jets,” Rev. Sci. Instrum. 83, 10D523, 2012.
  11. Merritt, E. C., Moser, A. L., Hsu, S. C., Loverich, J. and Gilmore, M., “Experimental characterization of the stagnation layer between two obliquely merging supersonic plasma jets,” Phys. Rev. Lett., 111, 085003, 2013
  12. Merritt, E. C., Lynn, A. G., Gilmore, M. A. and Hsu, S. C. “Multi-chord fiber-coupled interferometer with a long coherence length laser,” Rev. Sci. Instrum, 83, 033506, 2012.
  13. Liu, W. and Hsu, S. C., “Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma,” Nucl. Fusion, 51, 073026, 2011.
  14. Lynn, A. G., Merritt, E., Gilmore, M., Hsu, S. C., Witherspoon, F. D. and Cassibry, J. T., “Diagnostics for the plasma liner experiment,” Rev. Sci. Instrum. 81, 10E115, 2010.
  15. I. N. Bogatu, S. A. Galkin, J. S. Kim, Y. C. F. Thio, “Hyper-Velocity Fullerene-Dusty Plasma Jets for Disruption Mitigation,” J. Fusion Energy, 2014.
  16. A. L. Moser and S. C. Hsu, “Experimental characterization of a transition from collisionless to collisional interaction between head-onmerging supersonic plasma jets,” Phys. Plasmas, vol. 22, p. 055707, 2015.
  17. C. S. Adams, A. L. Moser, and S. C. Hsu, “Observation of RayleighTaylor-instability evolution in a plasma with magnetic and viscous effects,” Phys. Rev. E, vol. 92, p. 051101(R), 2015.
  18. S. C. Hsu, S. J. Langendorf, K. C. Yates, J. P. Dunn, S. Brockington, A. Case, E. Cruz, F. D. Witherspoon, M. A. Gilmore, J. T. Cassibry, R. Samulyak, P. Stoltz, K. Schillo, W. Shih, K. Beckwith, and Y. C. F. Thio, “Experiment to Form and Characterize a Section of a Spherically Imploding Plasma Liner,” (Submitted for publication, September, 2017).

PJMIF Modeling Papers:

  1. Knapp, C. E. and Kirkpatrick, R. C., “Possible energy gain for a plasma-liner-driven magnetoinertial fusion concept,” Phys. Plasmas, 21, 070701, 2014
  2. J. T. Cassibry, R. J. Cortez, S. C. Hsu, and F. D. Witherspoon, “Estimates of confinement time and energy gain for plasma liner driven magnetoinertial fusion using an analytic self-similar converging shock model,” Phys. Plasmas, vol. 16, p. 112707, 2009.
  3. T. J. Awe, C. S. Adams, J. S. Davis, D. S. Hanna, S. C. Hsu, and J. T. Cassibry, “One-dimensional radiation-hydrodynamic scaling studies of imploding spherical plasma liners”, Physics of Plasmas, 18, 072705 (2011)
  4. J. T. Cassibry, M. Stanic, S.C. Hsu, F.D. Witherspoon and S. I. Abarzhi, ”Tendency of spherically imploding liners formed by merging plasma jets to evolve toward spherical symmetry,” Phys. Plasmas, 19, 052702 (2012); doi: 10.1063/1.4714606
  5. Cassibry, J. T., Stanic, M. and Hsu, S. C., “Ideal hydrodynamic scaling relations for a stagnated imploding spherical plasma liner formed by an array of merging plasma jets,” Phys. Plasmas 20, 032706, 2013
  6. Davis, J. S., Hsu, S. C., Golovkin, I. E., MacFarlane, J. J. and Cassibry, J. T. One dimensional radiation-hydrodynamic simulations of imploding spherical plasma liners with detailed equation-of-state modeling. Phys. Plasmas 19, 102701, 2012
  7. C. Thoma, D. R. Welch, R. E. Clark, N. Bruner,1 J. J. MacFarlane, and I. E. Golovkin. Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state, Phys. Plasmas 18, 103507 (2011)
  8. Santarius, J. F. Compression of a spherically symmetric deuterium-tritium plasma liner onto a magnetized deuterium-tritium target. Phys. Plasmas 19, 072705, 2012
  9. H. Kim, L. Zhang, R. Samulyak, and P. Parks, “On the structure of plasma liners for plasma jet induced magnetoinertial fusion,” Phys. Plasmas, vol. 20, p. 022704, 2013.
  10. H. Kim, R. Samulyak, L. Zhang, and P. Parks, “Influence of atomic processes on the implosion of plasma liners,” Phys. Plasma 19, 082711 (2012).
  11. G. Kagan, X. Tang, S. C. Hsu, and T. J. Awe, “Bounce-free spherical hydrodynamic implosion,” Phys. Plasmas 18, 120702 (2011).
  12. R. Samulyak, P. Parks, and L. Wu, “Spherically symmetric simulation of plasma liner driven magnetoinertial fusion,” Phys. Plasmas, vol. 17, p. 092702, 2010. 10.1063/1.3481461
  13. T. Cassibry, R. J. Cortez, S. C. Hsu, and F. D. Witherspoon, “Estimates of confinement time and energy gain for plasma liner driven magneto-inertial fusion using an analytic self-similar converging shock model,” Phys. Plasmas 16, 112707 (2009)
  14. P. B. Parks, On the efficacy of imploding plasma liners for magnetized fusion target compression, Phys. Plasmas 15, 062506, 2008.
  15. J. T. Cassibry, Y. C. Francis Thio, T. E. Markusic, S. T. Wu, Numerical Modeling of a Pulsed Electromagnetic Thruster Experiment, J. Propulsion and Power, 22, p. 628, 2006.
  16. J. Loverich and A. Hakim, “Two-dimensional modeling of ideal merging plasma jets,” J. Fusion Energy, vol. 29, p. 532, 2010.
  17. J. T. Cassibry, R. Cortez, C. Cody, S. Thompson, and L. Jackson, “Three dimensional modeling of pulsed fusion for propulsion and terrestrial power using smooth particle fluid with maxwell equation solver (SPFMaX),” in 53rd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, 2017, https://doi.org/10.2514/6.2017-4677.
  18. R. Samulyak, J. Du, J. Glimm, and Z. Xu, “A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers,” J. Comp. Phys., vol. 226, p. 1532, 2007.
  19. J. J. MacFarlane, I. E. Golovkin, and P. R. Woodruff, “HELIOS-CR – a 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling,” J. Quant. Spect. Rad. Transfer, vol. 99, p. 381, 2006. [40] J. J. MacFarlane, “VISRAD–A 3-D view factor code and design tool for high energy density physics experiments,” J. Quant. Spect. Rad. Transfer, vol. 81, p. 287, 2003.
  20. K. Beckwith, S. A. Veitzer, S. McCormick, J. Ruge, L. N. Olson, and J. C. Cahoun, “Fully implicit ultrascale physics solvers and application to ion source modeling,” IEEE Trans. Plasma Sci., vol. 43, p. 957, 2015.

Beat-Wave Current Drive:

  1. D. R. Welch, T. C. Genoni, C. Thoma, N. Bruner, D. V. Rose, and S. C. Hsu, “Simulations of Magnetic Field Generation in Unmagnetized Plasmas via Beat-Wave Current Drive,” Phys. Rev. Lett. 109, 225002 (2012).
  2. D. R. Welch, T. C. Genoni, C. Thoma, D. V. Rose, and S. C. Hsu. Particle-in-cell simulations of laser beat-wave magnetization of dense Plasmas, Phys. Plasmas 21, 032704 (2014)
  3. Ghizzo, P. Bertrand, M. Shoucri, T. W. Johnston, E. Fijalkow’, M.R. Feix, V.V. Demchenko, Study of laser-plasma beat wave current drive with an eulerian vlasov code, p. 45 – 65, Nuclear Fusion, vo1.32, no.1 (1992).
  4. J. H. Rogers and D. Q. Hwang, Measurements of Beat-Wave-Accelerated Electrons in a Toroidal Plasma, PRL 68 (26), p. 3877, 1992.
  5. P. Bertrand, A. Ghizzo, T. W. Johnston, M. Shouri, E. Fijalkow and M. R. Feix, A nonperiodic Euler-Vlasov code for the numerical simulation of laser-plasma beat wave acceleration and Raman scattering, p. 1028, Phys. Fluids B, 2 (5), 1990.